An Improved Semi-supervised Clustering Algorithm Based on Active Learning
نویسندگان
چکیده
In order to solve the difficult questions such as in the presence of the cluster deviation and high dimensional data processing in traditional semi-supervised clustering algorithm, a semi-supervised clustering algorithm based on active learning was proposed, this algorithm can effectively solve the above two problems. Using active learning strategies in algorithm can obtain a large amount of information of pairwise constraints therefore enhance the proportion of prior knowledge. And the use of this constraint set projection space, finally in the mapping of the subspace, the improved K-means algorithm implemented for data clustering, as the algorithm clustering object is a low dimensional data, and prior knowledge increased, clustering in time efficiency can be guaranteed, and also can solve the deviation problem of clustering. The experiment results show that, with active learning algorithm clustering performance improvement, was superior to the other two semi-supervised clustering algorithms.
منابع مشابه
Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملAn Improved Semi-Supervised Clustering Algorithm Based on Active Learning
In semi supervised clustering is one of the major tasks and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized and the similarity of objects between clusters is minimized. The dataset sometimes may be in mixed nature that is it may consist of both numeric and categorical type of data. Naturally these two types of...
متن کاملA confidence-based active approach for semi-supervised hierarchical clustering
Semi-supervised approaches have proven to be effective in clustering tasks. They allow user input, thus improving the quality of the clustering obtained, while maintaining a controllable level of user intervention. Despite being an important class of algorithms, hierarchical clustering has been little explored in semisupervised solutions. In this report, we address the problem of semi-supervise...
متن کاملAn Efficient Iterative Framework for Semi- Supervised Clustering Based Batch Sequential Active Learning Approach
Semi-supervised is the machine learning field. In the previous work, selection of pairwise constraints for semi-supervised clustering is resolved using active learning method in an iterative manner. Semi-supervised clustering derived from the pairwise constraints. The pairwise constraint depends on the two kinds of constraints such as must-link and cannot-link.In this system, enhanced iterative...
متن کامل